Hi!请登陆

锂动力电池模组电气连接,接触电阻增加的原因

2021-1-24 39 1/24

由于运行条件的限制,锂动力电池模组经常暴露于空气中,氧化及大气污染所产生的电化效应是使锂动力电池模组电气连接接触电阻增大的关键因素。锂动力电池模组的连接一般采用铜、铝等金属材料,其氧化物比它本身的电阻大几百倍,实验表明,在40×40mm的纯铝接触面上,如果存在50埃厚的氧化铝薄膜,在保持足够大的接触压力,其薄膜已处于临界变形状态,其接触电阻达到数千个微欧级。

在电气连接表面会出现由物理、化学等诸多因素产生的污染薄膜,这种薄膜一旦形成,就会不断地使别的接触点丧失载流能力,接触电阻开始缓慢地增加,一旦接触点减少到某一临界值,其温升就会超过电气设备的允许值,进一步引起接触面的氧化,从而使接触电阻急剧上升,造成恶性循环。

受大气污染的影响,我国不同程度地受到酸雨的危害,研究及资料显示,酸雨与铜接触后,会生成氧化铜、氧化亚铜、硫化铜、硫化亚铜、硫酸铜等化学物质,它不但使接触处的接触电阻增大,同时还会进一步腐蚀接触面,产生连锁反应。

如果不有效地去除力电池模组电气连接相互接触表面覆盖的由气体薄膜、氧化物、硫化物等构成的薄膜状物质的影响,势必在电气连接处存在接触电阻,如果此接触电阻超出一定的数值,就会严重降低电气连接处的载流能力,同时还会在电气连接处产生不允许的热效应,直至产生故障及事故。导致锂动力电池模组电气连接接触电阻增加的原因有:

1)电气连接安装工艺不当。在连接安装过程中,错误使用砂纸打磨连接体的接触表面时,将会有一定数量的玻璃屑及砂粒嵌入连接体的金属接触表面内,导致有效接触面积减少而使接触电阻增大。

2)紧固螺栓压力不当。在电气连接操作中存在一个误区,认为联接螺栓拧的愈紧愈好,其实不然。当螺母的压力达到某个临界压力值时,若材料的强度差,再继续增加不当的压力,将会造成接触面部分变形隆起,反而使接触面积减少,接触电阻增大。

3)不同金属的膨胀效应引起。钢制螺栓的金属膨胀系数要比铜质、铝质母线小得多,尤其是螺栓型设备接头,在运行中随着负荷电流及温度的变化,其铝或铜与铁的膨胀和收缩程度将有差异而产生蠕变。所谓蠕变就是金属在应力的作用下缓慢的塑性变形,蠕变的过程还与接头处的温度有很大的关系。

实践证明,当接头处的运行工作温度超过80℃时,接头金属将因过热而膨胀,使接触表面位置错开,形成微小空隙而氧化。当负荷电流减少温度降低回到原来接触位置时,由于接触面氧化膜的覆盖,不可能是原安装时金属间的直接接触。每次温度变化的循环所增加的接触电阻,将会使下一次循环的热量增加,所增加的较高温度又使接头的工作状况进一步变坏,因而形成恶性循环。

4)不同材质接头接触表面的微电池腐蚀效应。据有关试验文献资料表明,铜的标准电势为+0.34V,铝的标准电势为-1.28V,铜铝之间的电势差为+1.62V。若铜铝直接接触,空气中的水和氧化碳及其它有害杂质会在接头接触表面形成电解液。由于两极直接接触,便会有微弱的电流流动,在电解液的作用下,使接触表面逐渐腐蚀,引起接触电阻增大。

相关推荐